
Properties
?FORALL(X,Generator,Property)—bind X to the

generated value for use in the property.

?IMPLIES(Precondition,Property)—skip test cases

where the precondition is false.

?WHENFAIL(Action,Property)—perform the Ac-

tion when printing a counterexample to the property.

?TRAPEXIT(Property)—test Property in a process

which traps exits. Do not use ?FORALL inside ?

TRAPEXIT.

fails(Property)—succeeds if Property fails.

numtests(N,Property)—test the Property N times.

collect(X,Property)—test the property, and after-

wards display the values of X.

Generators
?LET(X,Generator,…X…)—bind X to the gener-

ated value for use in the third argument.

?SUCHTHAT(X,Generator,Condition)—generate

an X satisfying the condition.

?SIZED(Size,Generator)—bind Size to Quick-

Check’s size parameter for use in the generator.

resize(Size,Generator)—set the size parameter

within the generator.

?LAZY(Generator)—build the generator only if it is

chosen for use.

oneof([Gen1, Gen2, …])—choose one of the gen-

erators from a list.

frequency([{Weight1,Gen1},{Weight2,Gen2}…])

—weighted choice of a generator from a list.

[X || Condition]++List—add X to List if the Condi-

tion is true.

elements(List)—choose an element from the list.

int()—a small integer.

nat()—a small non-negative integer.

real()—a real number.

bool()—true or false.

char()—a printable character.

choose(M,N)—an integer in the range M to N.

list(Generator)—a list of generated values.

default(Default,Generator)—specify a default value

for the generator, which shrinking will select if pos-

sible.

weighted_default({Weight1,Default},

{Weight2,Generator})—same as default, with a

weighted choice.

Fault Injection
fault(FaultyGenerator,CorrectGenerator)—define a

fault that can be injected.

less_faulty(N,Generator)—inject each fault in the

generator 1/Nth as often.

fault_rate(M,N,Generator)—inject faults in the gen-

erator in M out of N cases.

QuickCheck Ready Reference

Shrinking
?SHRINK(Generator,[Gen1,Gen2…])—use Genera-

tor, then during shrinking try Gen1, Gen2…

noshrink(Generator)—use Generator, but disable

shrinking of the result.

Symbolic Tests
Symbolic function calls:

{call,Module,Function,Arguments}.

eval(SymbolicExpression)—evaluate symbolic func-

tion calls.

State Machines
Symbolic commands: {set,{var,V},

{call,Module,Function,Arguments}}.

Callbacks:

initial_state()

command(State)—generate a suitable command

next_state(State,Result,Call)—state after the call

precondition(State,Call)—is the call valid in a

test?

postcondition(State,Call,Result)—is the result

correct?

commands(Module)—generate a list of commands

from the callback module.

commands(Module,Init)—commands generated from

an initial state.

run_commands(Module,Commands)—run the com-

mands, returns {History,FinalState,Result}.

more_commands(N,Generator)—increase the number

of commands generated by a factor N.

Interaction
eqc:quickcheck(Property)—run (by default) 100 tests

of the property.

eqc:recheck()—repeat the last failing test.

eqc:watch_shrinking()—repeat the last failing test,

and display cases tested during shrinking.

eqc:counterexample()—the last failing test case.

eqc:check(Property,CounterExample)—test the prop-

erty in the given case.

eqc:module(Module)—test all the properties in the

named module.

eqc_gen:sample(Generator)—display samples from

the generator.

eqc_gen:sampleshrink(Generator)—display a sample

and possible shrinkings.

